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Abstract

The bacterial pathogen Listeria monocytogenes (Lm) is the causative agent of
listeriosis, a rare but fatal foodborne disease. During infection, Lm can traverse
several host barriers and enter the cytosol of a variety of cell types. Thus,
consideration of the extracellular and intracellular niches of Lm is critical for
understanding the infection process. Here, we review advances in our
understanding of Lm infection and highlight how the interactions between the
host and the pathogen are context dependent. We discuss discoveries of how
Lm senses entry into the host cell cytosol. We present findings concerning how
the nature of the various cytoskeleton components subverted by Lm changes
depending on both the stage of infection and the subcellular context. We
present discoveries of critical components required for Lm traversal of
physiological barriers. Interactions between the host gut microbiota and Lm will
be briefly discussed. Finally, the importance of Lm biodiversity and
post-genomics approaches as a promising way to discover novel virulence
factors will be highlighted.
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Introduction

Listeria  monocytogenes  (Lm) is  ubiquitous in  the
environment and potentially an enteropathogen. Lm is the
causative agent of the foodborne disease listeriosis and is
thus a major con-cern in the food industry. Lm switches
between saprophytism and virulence depending on its
environmental context. Lm can replicate intracellularly in a
variety of cell types, can traverse several host barriers, and has
long been used as a model of infection. The capacity of Lm to
infect multiple tissues has under-lined the cell-type-dependent
role of different bacterial and host proteins.

Lm can infect a wide variety of cell types during its dissemination
in the host, invading both phagocytic and non-phagocytic cells in
a variety of tissues'. Following internalization into the host cell,
the bacterium escapes its membrane-bound vacuole and replicates
within the cytosol. The bacterium then subverts the host cytoskel-
eton, inducing characteristic actin “comet tails” to drive both intra-
cellular and intercellular movements. The most important virulence
factor (in addition to actin assembly-inducing protein [ActA]’
responsible for the actin-based motility, and the two invasion
proteins internalinA [InlA] and internalin B [InlB]), is certainly
listeriolysin O (LLO)®. This pore-forming toxin appears to be a
multifaceted factor involved in several steps of infection, before
bacterial entry into cells, at the level of the escape from the vacuole,
and in the cytosol.

Here, we review recent advances in the understanding of Lm
infection with a particular focus on the importance of taking into
account the subcellular and physiological environmental context.
We highlight some recently discovered cues used by Lm to sense
entry into the host as a signal to regulate virulence. Furthermore,
we discuss new aspects of Lm subversion of the actin cytoskeleton.
We also provide recent updates on how Lm crosses physiologi-
cal barriers, notably the small intestine and placenta. Recent work
has also uncovered the interaction between Lm and the host gut
microbiota, highlighting the importance of considering not only
standard laboratory strains of Lm but also other strains as a source
of discovery of novel virulence factors.

Subversion of host cell processes

Detection of the host cell environment: the role of
glutathione and L-glutamine

Upon entry into the host cell, Lm is known to modify its tran-
scriptional program*’. The transcription factor positive regulatory
factor A (PrfA) is a master transcriptional activator of genes
necessary for Lm pathogenesis, including prfA itself*’. The
expression of prfA is regulated by a variety of cues, allowing Lm
to adapt to different environments. PrfA translation is known to
be dependent on temperature, with higher translation levels at
37°C compared to 30°C'". Recently, it was found that the scarcity
of branched-chain amino acids, as would be encountered by Lm
during infection, leads to upregulation of prfA transcription'"'”.
Furthermore, glutathione, abundant within the host cytosol,
has been uncovered as an allosteric activator of PrfA protein
activity'*'". In addition to activating PrfA, glutathione was
discovered to covalently attach to a conserved cysteine on LLO".
This S-glutathionylation abolishes LLO hemolytic activity, but

F1000Research 2017, 6(F1000 Faculty Rev):1126 Last updated: 14 JUL 2017

the precise mechanism by which this reversible post-translational
modification affects infection is unknown.

L-glutamine, abundant within host blood plasma and host cell
cytosol, has recently been reported as another major cytosolic
cue for the upregulation of virulence genes in Lm'®. It is currently
unknown whether L-glutamine, similarly to glutathione, affects
PrfA activity at the post-translational level.

To further investigate the cues sensed by Lm for the regulation of
virulence, a screen was performed to identify Lm genes required
for expression of the surface protein ActA'’. Interestingly, most of
the genes important for ActA expression are implicated in bacterial
redox homeostasis. Since the host cell can induce oxidative stress
as a means of antibacterial activity, redox changes may serve as
another cue for the regulation of virulence genes in Lm.

The discovery of novel environmental cues sensed by Lm will con-
tinue to be important for the study of the infectious process. Indeed,
earlier studies have shown an intracellular upregulation of some
virulence factors, e.g. InlK or LntA, but the exact cues were not
elucidated'®". Interestingly, other virulence factors such as InlJ or
LLS are not expressed in cultured cells but are upregulated in vivo
either in the liver and blood” or within the intestine’!, again upon
undefined environmental cues. Thus, further work is required to
determine what currently uncharacterized signals may be sensed by
Lm for the upregulation and activation of virulence genes that are
poorly expressed in vitro.

Subversion of the host cytoskeleton

It has long been known that actin polymerization drives Lm host
cell entry” as well as intracellular and intercellular motility**. Once
Lm reaches the host cytosol, ActA is transcriptionally upregu-
lated and localized to the bacterial cell surface, where it recruits
and activates the host actin regulator the actin-related protein 2/3
(Arp2/3) complex”. The resulting actin cloud surrounding the
bacteria enables it to evade detection by the host autophagy
machinery”~’. ActA polarization at one of the bacterial cell poles
results in a polarized polymerization of actin. The resulting actin
“comet tails” propel the bacteria within the host cell cytosol
and facilitate cell-to-cell spread. Although this process is well
characterized, recent results have uncovered novel insights into the
composition of the host Arp2/3 complex, how the actin cytoskel-
eton is involved in intracellular and intercellular motility, and
how these processes are dependent on the stage of infection and
subcellular context.

Exploiting the Arp2/3 complex during infection. The Arp2/3
complex is composed of seven subunits: the Arp2 and Arp3
proteins and five Arp complex proteins (ARPC1-5)*~*. When
activated by nucleation-promoting factors, it binds to a pre-
existing actin filament and catalyzes the formation of a de novo
Y-branched actin filament. Interestingly, Lm ActA mimics host
nucleation-promoting factors to recruit and activate Arp2/3 near the
bacterial surface™.

We recently discovered differential requirements for subunits of the
Arp2/3 complex for distinct aspects of Lm infection that require
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actin, i.e. entry and actin-based motility*. Strikingly, ARPC1B, but
not ARPC1A, appears to be critical for efficient Lm cell invasion. In
contrast, ARPC1A, but not ARPCI1B, is required for actin comet
tail formation. Together, these results suggest that different iso-
forms of ARPCI1 are exploited by Lm differently. Both ARPC4 and
ARPCS appear to be dispensable for cell invasion. In contrast,
ARPCS is not critical for actin tail formation. Thus, rather than
existing as a single canonical complex, different Arp2/3 complexes
may be formed by different subunits, and this modularity can
be exploited by Lm for distinct steps of infection™. The mecha-
nism by which Lm can activate different Arp2/3 complexes and the
effect of differential Arp2/3 activation on the actin cytoskeleton are
still unknown.

It is currently unclear whether different Arp2/3 complexes exist
and play a role in vivo. Nevertheless, the existence of different
Arp2/3 complexes has also been recently reported in the case of
focal adhesions™ and the actin-driven intracellular propulsion of
vaccinia virus®”. The recent discovery of sick but living human
children with frameshift mutations in ARPCI1B, the predomi-
nant ARPC1 isoform expressed in blood cells®, suggests critical
but distinct roles for different components of the Arp2/3 complex
in vivo.

Moving inside cells: mechanisms of Lm intracellular propulsion.
Actin polymerization is known to propel intracellular Lm, but
the precise mechanism of force generation has remained unclear.
There are two prevailing models for actin polymerization-
dependent intracellular propulsion of Lm. In the “Brownian ratchet”
model, growing tangential actin filaments protrude and provide
the propulsive force’’. The alternate ‘“macroscale elastic
propulsion” model implicates large-scale deformation of the actin
meshwork as propelling the bacterium forward®’. Whether Lm intra-
cellular propulsion is driven by individual actin filament elongation
or by elasticity of the actin network was unclear.

Recent cryo-electron tomography of Lm-associated actin comet
tails both within the cell™ and within cell-free extracts has shed
some light on this process. The network of actin comet tails is
composed of both branched and, surprisingly, some bundled
filaments”. The novel discoveries of additional F-actin bun-
dles throughout the comet tail perpendicular to the direction of
motion* in addition to tangentially orientated filaments to the
bacterial surface suggest that elastic propulsion is the major driving
force of Lm propulsion.

These studies are reminiscent of the debate concerning the lamel-
lipodial actin network in migrating cells. The canonical view of
Arp2/3-mediated branched actin networks of lamellipodia®~!
was challenged by a report implicating very little branched actin
but instead many overlapping parallel actin bundles™. The sugges-
tion that actin filaments were mainly unbranched in lamellipodia
was controversial’' =, Ultimately, a consensus was reached: lamel-
lipodia are once again considered to contain Arp2/3-mediated
branches of actin, but there are far fewer of them than expected™.
Membrane-tethered actin polymerizers are thought to mechani-
cally and transiently link actin protrusions to the leading edge
plasma membrane of a migratory cell’’. This transient F-actin
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polymerization model is similar to the model of actin propul-
sion of Lm?’. Altogether, these recent studies highlight the fruitful
collaboration of studies of F-actin polymerization in cell migration
and Lm propulsion.

In addition to actin comet tails, Lm also induces actin-based
bacterial protrusions at the host cell plasma membrane to drive
cell-to-cell spread. The actin network in Lm-mediated protru-
sions is composed of parallel actin filaments**—more parallel and
less branched than would be expected for Arp2/3-driven polym-
erization. The Rho-family GTPase cell division cycle protein
42 (Cdc42) is a conserved upstream regulator of host nucleation-
promoting factors and Arp2/3** but has no role in Lm actin comet
tail formation”. In polarized epithelial tissue culture, Lm actin-
based protrusions must counteract cortical tension. Lm partially
relieves this tension by secreting the protein InlC, which inhib-
its Tuba, a Cdc42 activator*®*. While these results suggest that
Cdc42 activity restricts Lm cell-to-cell spread, a subsequent report
by another group suggests that membrane protrusion formation
requires active Cdc42 and the actin regulator formin®’, which
induce bundled F-actin. The reason for the conflicting require-
ments of Cdc42 activity for Lm cell-to-cell spread is unclear,
although the authors speculate that the discrepancy may be because
of the difference in cell types used (polarized epithelial Caco-2
versus non-polarized HeLa cells). Further work is required to
ascertain the different requirements for Cdc42 activity in Lm
intercellular spread and how the choice of model tissue culture
affects these requirements.

Recently, new host cell factors that are recruited to the Lm
comet tail were discovered. In addition to the known ActA tar-
gets Arp2/3 and enabled/vasodilator-stimulated phosphoprotein
(Ena/VASP)*'=*, ActA was recently shown to recruit lamellipo-
din. Lamellipodin is a binding partner of Ena/VASP and an actin
regulator in lamellipodia® that promotes Lm cell-to-cell spread™.
Interestingly, lamellipodin is recruited to Lm actin comet tails
independently of Ena/VASP, highlighting that lamellipodin can
bind to F-actin. Although lamellipodin promotes cell-to-cell
spread, curiously, lamellipodin knockdown increased the speed of
actin-propelled Lm™. How lamellipodin both promotes Lm
intercellular spread and appears to reduce Lm comet tail speed
remains to be clarified. Another group has found that lamel-
lipodin can bind directly to F-actin independently of Ena/VASP
in vitro and in cultured migratory cells, possibly promoting
lamellipodial formation™. Together, these results highlight the
subversion of host cell lamellipodial formation by Lm to induce
cell-to-cell spread.

Actomyosin contractility and Lm. Non-muscle myosin II
(myosin) is an actin-based motor protein that assembles into bipo-
lar filaments to exert contractile forces. Interestingly, myosin is
known to inhibit Lm infection®. As mentioned above, suppres-
sion of Cdc42 activity in polarized epithelial cells favors cell-to-
cell spread, presumably through relaxation of cortical tension***.
However, direct quantification of the relaxation of cortical tension
by Lm is lacking, and it would be interesting to measure tension
as routinely performed in developmental biology research’-*.
In addition, pharmacological inhibition of myosin was shown to
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favor Lm host cell adhesion and invasion™. Phosphorylation of the
myosin heavy chain at a conserved tyrosine residue was detected
in response to Lm infection®. Although phosphorylation of this
tyrosine has been previously predicted in muscle myosin heavy
chain®, its impact on myosin contractility is unknown. Myosin
activity seems to protect plasma membrane integrity from LLO-
induced damage and this leads to increased host survival in vivo in
a zebrafish infection model®, although the underlying mechanism
remains unclear.

Furthermore, formin and the actomyosin regulator Rho-associated
kinase (ROCK) induce the internalization of Lm into endothelial
cells®’. While in other cell types (such as epithelial and fibroblast)
ROCK inhibits the entry of Lm, ROCK appears to favor bacterial
adhesion to the cell surface of endothelia®. It will be interesting to
see if other regulators of actomyosin cortical tension cell—cell adhe-
sions (for example 64) are involved in Lm infection.

Subversion of host endoplasmic reticulum

Lm is known to alter the host endoplasmic reticulum (ER). Indeed,
Lm induces ER stress and the unfolded protein response®. The
coat complex COPII, required for ER-to-Golgi trafficking®, was
recently found to restrict Lm cell-to-cell spread in polarized epi-
thelial tissue culture®. In addition, we discovered that Lm infec-
tion induces the expression of the small ubiquitin-like modifier
interferon-stimulated gene 15 (ISG15) in non-phagocytic cells,
triggering an ISGylation of a number of ER and Golgi proteins
and increasing cytokine secretion®. Furthermore, studies have
uncovered a novel role for Gp96 (glycoprotein of 96kDa),
an ER resident protein chaperone. Lm infection was already
known to trigger Gp96 recruitment from the ER to the plasma
membrane, becoming exposed to the cell surface and co-localizing
with surface bacteria®"". Recently, Gp96 was shown to be recruited
to sites of LLO-induced blebbing along with myosin®, but the
underlying mechanisms are unclear. It will be interesting to see if
there are other strategies used by Lm to perturb trafficking between
endomembrane components, especially in the context of different
cell types.

In vivo Listeria behavior

Overcoming physiological barriers

Lm pathogenesis relies on the ability of the bacterium to traverse
several physiological barriers, including the intestinal epithelium
and the placenta, and survive in multiple cell types’'.

Passage through the intestinal epithelial barrier is the first port of
entry for Lm into the host. Interaction of the Lm surface protein
InlA with E-Cadherin (E-cad), the host adherens junction epi-
thelial cadherin is the key step in Lm intestinal invasion. Although
E-Cad is localized to the basolateral membrane of vertebrate epi-
thelial cells and would thus be generally inaccessible to Lm in the
intestinal lumen, E-Cad is accessible at extruding cells at intesti-
nal villi tips’” and in mucus-secreting goblet cells’”®. The interac-
tion between InlA and human E-Cad is species specific’. Thus,
a knock-in transgenic mouse line bearing a point mutation in E-
Cad that allows for the InlA-E-Cad interaction is used for oral
infections with Lm’’°, although many studies are still performed
with non-transgenic mice”'. InlA-E-Cad interaction triggers rapid
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transcytosis of Lm through goblet cells into the basal lamina
propria”. Recent work has shown that phosphoinositide 3-kinase
(PI3-K) is constitutively active in the intestine, explaining why
the Lm surface protein InlB, which is known to activate PI3-K,
is not required for crossing the intestinal barrier’’. Interestingly,
it was shown that Lm is mostly extracellular in the intestine of
orally infected mice and that the intracellular pool is a minor but
important fraction during infection®. The majority of Lm in the
gut was discovered to be associated with monocytes, but there is
very poor intracellular growth” in these cells.

Lm is one of the few pathogens capable of traversing the
placental barrier. It requires both InlA and InIB”>*’. InlA-mediated
invasion of Lm into the placenta requires InIB-dependent activation
of PI3-K"". Furthermore, a new Inl, InIP, has been discovered as an
enhancer of placental invasion in both human placental explants
and in vivo infection of guinea pigs and mice®', although the
mechanisms through which InlP acts remain to be elucidated.

Interaction with the host gut microbiota

An emerging field of investigation is the interaction between

the host gut microbiota and enteropathogens. Pre-colonization
with lactobacilli protects mice against oral infection by Lm®.
Administration of Lactobacillus affects the expression of host genes
and Lm protein-coding genes and small RNAs*. In addition, the
host gut microbiota interferes with the host microRNA (miRNA)
response upon Lm  oral infection®. Recently, we
uncovered that epidemic strains of Lm express a bacteriocin in
the gut of orally infected mice, altering the host gut microbiota
to favor Lm infection’’. It will be interesting to investigate
whether Lm has other means with which to modulate the host gut
microbiota. These results are beginning to uncover the interplay
among the host, the host’s microbiota, and the enteropathogen Lm.

Post-genomics era: considering more than just
laboratory strains

The rise of fast genomic sequencing has opened new avenues to
study Lm-host interactions. The plethora of genomic data and
development of new bioinformatic tools have greatly facili-
tated the study and comparison of multiple Lm strains and other
closely related Listeria species**. The development of
proteogenomics and the integration of sequencing and mass
spectrometry have uncovered novel anti-sense RNAs* and novel
mini-proteins®’ of Lm. Unsurprisingly, different Lm strains pos-
sess differences at the genomic, transcriptomic, and pathogenic
level®**. For example, the novel Lm bacteriocin cited above that
targets the host gut microbiota’ is present in epidemic Lm strains
but is absent in the standard reference laboratory strains. Certain
epidemic strains appear more virulent in animal studies and are
able to infect the central nervous system and traverse the placen-
tal barrier in human cases of listeriosis®. In contrast, many of the
reference laboratory strains are poorly neuroinvasive”, suggest-
ing that analysis of clinical isolates may be more fruitful for the
investigation of human disease.

Recent genomic comparative studies of multiple strains, both

laboratory and clinical*****' including the recently sequenced
306 draft genomes of Lm isolates’, have highlighted that analysis
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of Listeria biodiversity and genomic conservation is quite informa-
tive for the understanding of virulence. Identification of genomic
regions over-represented in more virulent strains as well as
differences at the transcriptomic level are promising ways to
uncover novel bacterial factors involved in infection and in clinical
hypervirulence. The recent development of Listeriomics, an online
tool to easily compare sequenced Listeria species, should be very
instrumental in this post-genomics approach”.

Conclusions and perspectives

Recent discoveries have advanced our understanding of
Listeria-host interactions. Novel cues for the upregulation of
virulence factors as well as the discovery of genes expressed
exclusively in vivo highlight the need for consideration of the
environment and tissues during Lm infection. In the near future,
high-throughput sequencing and bioinformatics of multiple
Listeria species will yield more insights into the mechanisms by
which Lm subverts the host during infection in vivo.
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